Help Docs

APM Insight Python agent performance report

The performance report helps you optimize the APM Insight Python agent so that it has the least impact on the performance of your application.

Test environment

OS: Ubuntu 20.04.1 LTS
CPU: 6-core
Memory: 15.3GB
Version: Python 3.8.10
Application framework: Django 4.0.4
Duration of test: Two hours

Impact on application's response time

Four sample Python application instances were run with and without the APM Insight Python agent at 300 and 600 transactions per minute, respectively. The data was collected over a period of two hours, and the results are summarized below.

300 transactions per minute:

Response time summary
Without agent
With agent
Average response time (ms) 18852 19274
Peak response time (ms) 23406 24106

The average time difference observed while running applications with and without the APM Insight Python agent is approximately 2.22%.

The timeline chart below explains the historical trend:

600 transactions per minute:

Response time summary
Without agent
With agent
Average response time (ms) 37620 38777
Peak response time (ms) 47792 48413

The average time difference observed while running applications with and without the APM Insight Python agent is approximately 3.05%.

The timeline chart below explains the historical trend:

Impact on CPU usage

The CPU consumption by the APM Insight Python agent depends mainly on the number of methods instrumented and the log level (the default is DEBUG).

The data shown below is a compilation of data from applications that ran parallelly with and without the APM Insight Python agent.

300 transactions per minute:

CPU usage
Without agent
With agent 
 Average usage (%)  0.49  0.7

When the application was running at 300 transactions per minute, the agent consumed an average of 0.21% of total CPU usage.

The timeline chart below explains the historical trend:

600 transactions per minute:

CPU usage
Without agent
With agent 
 Average usage (%)  1.53  2.51

When the application was running at 600 transactions per minute, the agent consumed an average of 0.98% of total CPU usage.

The timeline chart below explains the historical trend:

Note

The agent load on CPU consumption was tested on OS version Ubuntu 20.04.1 LTS
and is effective from APM Insight Python agent version 1.0.3.

Impact on physical memory (RAM) usage

By default, the APM Insight Python agent collects performance data and pushes it to its own service every minute, so the footprint on user memory is minimal and only transient. The important fact to note here is that memory consumption is directly proportional to the amount of data collected in a minute, so lowering the sampling factor or transaction trace threshold results in increased RAM usage.

The data shown below is a compilation of data from applications that ran parallelly with and without the agent.

300 transactions per minute:

Memory usage
Without agent
With agent 
 Average usage (%)  0.3  1.56

When the application was running at 300 transactions per minute, the agent consumed an average of 1.26% of total memory usage.

The timeline chart below explains the historical trend:

600 transactions per minute:

Memory usage
Without agent
With agent 
 Average usage (%)  0.31  4.26

When the application was running at 600 transactions per minute, the agent consumed an average of 3.95% of total memory usage.

The timeline chart below explains the historical trend:

Was this document helpful?

Would you like to help us improve our documents? Tell us what you think we could do better.


We're sorry to hear that you're not satisfied with the document. We'd love to learn what we could do to improve the experience.


Thanks for taking the time to share your feedback. We'll use your feedback to improve our online help resources.

Shortlink has been copied!